首页
高三英语周报
福建省2024年普通高中学业水平选择性考试·文数(九)9[24·(新高考)ZX·MNJ·文数·FJ]试题
福建省2024年普通高中学业水平选择性考试·文数(九)9[24·(新高考)ZX·MNJ·文数·FJ]试题正在持续更新,目前2024-2025英语周报答案网为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。
1以,已知过精图C,后+芳-1(a>60)的焦点F2,0)且倾斜角为的直线交精圆C于A,B两点,M16.(本小题满分15分)是线段AB的中点,0为坐标原点,若直线OM的斜率为2,则椭圆C的标准方程为已知椭圆C:若+岁=1(a>b>0)的左、右焦点分别是F,(-c,0),F,(c,0),直线13x十y-3c=0交椭圆C于M,N两点,M是椭圆C的顶点,△MFF2的周长为6.11已知稀圆C答+芳=1(a>0>0)的左右焦点分别为F,,RF=2VMD,点A是箱圆C位于第(1)求椭圆C的标准方程;(2)假设椭圆C的左顶点为A,过点F,(c,O)的直线m交椭圆C于M',N'两点,直线AM,AN分别一象限上的一点,且AF,⊥AF,延长F,A交y轴的正半轴于点P,若△APF的内切圆半径为2,则交直线:x=4于P,Q两点,求证:以线段PQ为直径的圆过定点F2(c,0).椭圆C的离心率是三、解答题:本题共2小题,每题15分,共30分。解答应写出文字说明、证明过程或演算步骤。15.(本小题满分15分)已知椭圆E+岁-1a>6>0)的离心率是,且过点(一1,下)】3(1)求E的方程;(2)若M(3,0),O为坐标原点,点P是E上位于第一象限的一点,线段PM的垂直分线交y轴于点N,求四边形OPMN面积的最小值.学客最贵【2023届高考二轮专题分层突破卷·文科数学(十三)第3页(共4页)】【2023届高考二轮专题分层突破卷·文科数学(十三)第4页(共4页)】
本文标签:
